Тайна влияния чисел на людей. Изучение точного предмета: натуральные числа — это какие числа, примеры и свойства

Мой секрет

Натуральные числа — основы. Изучение точного предмета: натуральные числа — это какие числа, примеры и свойства

Числа — это абстрактное понятие. Они являются количественной характеристикой объектов и бывают действительные, рациональные, отрицательные, целые и дробные, а также натуральные.

Натуральный ряд обычно используют при счёте, в котором естественным образом возникают обозначения количества. Знакомство со счётом начинается в самом раннем детстве. Какой малыш избежал смешных считалок, в которых как раз использовались элементы натурального счёта? «Раз, два, три, четыре, пять. Вышел зайчик погулять!» или «1, 2, 3, 4, 5, 6, 7, 8, 9, 10, царь решил меня повесить. «

Для любого натурального числа можно найти другое, большее его. Это множество принято обозначать буквой N и следует считать бесконечным в сторону возрастания. А вот начало у этого множество есть — это единица. Хотя существуют французские натуральные числа, в множество которых входит также и ноль. Но основными отличительными чертами и того, и другого множества является тот факт, что в них не входят ни дробные, ни отрицательные числа.

Потребность в пересчёте самых разных предметов возникла ещё в доисторические времена. Тогда предположительно сформировалось понятие «натуральные числа». Его формирование происходило на протяжении всего процесса изменения мировоззрения человека, развития науки и техники.

Однако не могли ещё мыслить абстрактно. Им сложно было уяснить, в чём заключается общность понятий «три охотника» или «три дерева». Поэтому при указании количества людей использовалось одно определение, а при указании того же количества предметов другого рода — совершенно другое определение.

Причём был чрезвычайно коротким. В нём присутствовали лишь числа 1 и 2, а заканчивался счёт понятием «много», «стадо», «толпа», «куча».

Позднее сформировался более прогрессивный счёт, уже более широкий. Интересен тот факт, что существовало всего два числа — 1 и 2, а следующие числа получались уже добавлением.

Примером этому послужили дошедшие до нас сведения о числовом ряде австралийского племени У них 1 обозначало слово «Энза», а 2 — слово «петчевал». Число 3 поэтому звучало как «петчевал-Энза», а 4 — уже как «петчевал-петчевал».

Большинство народов эталоном счёта признавали пальцы. Далее развитие абстрактного понятия «натуральные числа» пошло по пути использования зарубок на палочке. И тут встала необходимость обозначения десятка другим знаком. Древние люди наши выход — стали использовать другую палочку, на которой делались зарубки, обозначающие десятки.

Возможности в воспроизведении чисел чрезвычайно расширились с появлением письменности. Поначалу числа изображались чёрточками на глиняных табличках или папирусе, но постепенно стали использоваться другие значки для записи Так появились римские цифры.

Значительно позднее появились которые открыли возможность записи чисел сравнительно небольшим набором символов. Сегодня не составляет особого труда записать столь громадные числа, как расстояние между планетами и количество звёзд. Стоит только научиться пользоваться степенями.

Евклид в 3 веке до нашей эры в книге «Начала» устанавливает бесконечность числового множества А Архимед в «Псамите» раскрывает принципы для построения названий сколь угодно крупных чисел. Почти до середины 19 века перед людьми не вставала необходимость чёткой формулировки понятия «натуральные числа». Определение потребовалось с появлением аксиоматического математического метода.

И в 70-х годах 19 века сформулировал чёткое определение натуральных чисел, основанное на понятии множества. И вот сегодня мы уже знаем, что натуральные числа — это все целые числа, начиная от 1 и до бесконечности. Маленькие дети, делая свой первый шаг в знакомстве с царицей всех наук — математикой — начинают изучать именно эти числа.

Определение

Натуральными числами называются числа, предназначенные для счета предметов. Для записи натуральных чисел используются 10 арабских цифр (0–9), положенных в основание общепринятой для математических расчетов десятичной системы счисления.

Последовательность натуральных чисел

Натуральные числа составляют ряд, начинающийся с 1 и охватывающий множество всех положительных целых чисел. Такая последовательность состоит из чисел 1,2,3, … . Это означает, что в натуральном ряду:

  1. Есть наименьшее число и нет наибольшего.
  2. Каждое следующее число больше предыдущего на 1 (исключение – сама единица).
  3. При стремлении к бесконечности числа растут неограниченно.

Иногда в ряд натуральных чисел вводят и 0. Это допустимо, и тогда говорят о расширенном натуральном ряде.

Классы натуральных чисел

Каждая цифра натурального числа выражает определенный разряд. Самая последняя – это всегда количество единиц в числе, предыдущая перед ней – количество десятков, третья от конца – количество сотен, четвертая – количество тысяч и так далее.

  • в числе 276: 2 сотни, 7 десятков, 6 единиц
  • в числе 1098: 1 тысяча, 9 десятков, 8 единиц; разряд сотен здесь отсутствует, поскольку выражен нулем.

Для больших и очень больших чисел можно увидеть устойчивую тенденцию (если исследовать число справа налево, то есть от последней цифры к первой):

  • три последних цифры в числе – это единицы, десятки и сотни;
  • три предыдущие – это единицы, десятки и сотни тысяч;
  • три стоящие перед ними (т.е.7-я, 8-я и 9-я цифры числа, считая от конца) – это единицы, десятки и сотни миллионов и т.д.
Читать еще:  6 июль знак зодиака. Число рождения для женщины

То есть всякий раз мы имеем дело с тремя цифрами, означающими единицы, десятки и сотни более крупного наименования. Такие группы формируют классы. И если с первыми тремя классами в повседневной жизни приходится иметь дело более или менее часто, то другие следует перечислить, потому что далеко не все помнят наизусть их названия.

  • 4-й класс, следующий за классом миллионов и представляющий собой числа из 10-12 цифр, называется миллиард (либо биллион);
  • 5-й класс – триллион;
  • 6-й класс – квадриллион;
  • 7-й класс – квинтиллион;
  • 8-й класс – секстиллион;
  • 9-й класс – септиллион.

Сложение натуральных чисел

Сложение натур.чисел представляет собой арифметическое действие, позволяющее получить число, в котором содержится столько же единиц, сколько имеется в складываемых числах вместе.

Знаком сложения является знак «+». Складываемые числа называются слагаемыми, получаемый результат – суммой.

Небольшие числа складывают (суммируют) устно, письменно такие действия записывают в строку.

Многозначные числа, которые прибавлять в уме затруднительно, принято складывать в столбик. Для этого числа записывают одно под другим, выравнивая по последней цифре, то есть пишут разряд единиц под разрядом единиц, разряд сотен под разрядом сотен и так далее. Далее нужно попарно сложить разряды. Если сложение разрядов происходит с переходом через десяток, то этот десяток фиксируется как единица над разрядом слева (то есть следующим за ним) и суммируется вместе с цифрами этого разряда.

Если в столбик складывается не 2, а больше чисел, то при суммировании цифр разряда избыточным может оказаться не 1 десяток, а несколько. В этом случае на следующий разряд переносится количество таких десятков.

Вычитание натуральных чисел

Вычитание – это арифметическое действие, обратное сложению, которое сводится к тому, что по имеющейся сумме и одному из слагаемых нужно найти другое – неизвестное слагаемое. Число, из которого вычитают, называется уменьшаемым; число, которое вычитают, – вычитаемым. Результат вычитания называют разностью. Знак, которым обозначают действие вычитания, является «–».

При переходе к сложению вычитаемое и разность превращаются в слагаемые, а уменьшаемое – в сумму. Сложением обычно проверяют правильность выполненного вычитания, и наоборот.

Здесь 74 – уменьшаемое, 18 – вычитаемое, 56 – разность.

Обязательным условием при вычитании натуральных чисел является следующее: уменьшаемое обязательно должно быть больше вычитаемого. Только в этом случае полученная разность тоже будет натуральным числом. Если действие вычитания осуществляется для расширенного натурального ряда, то допускается, чтобы уменьшаемое было равно вычитаемому. И результатом вычитания в этом случае будет 0.

Примечание: если нулю равно вычитаемое, то операция вычитания не изменяет величины уменьшаемого.

Вычитание многозначных чисел обычно производят в столбик. Записывают при этом числа так же, как и для сложения. Вычитание выполняется для соответствующих разрядов. Если же оказывается, что уменьшаемое меньше вычитаемого, то берут единицу из предыдущего (находящегося слева) разряда, которая после переноса, естественно, превращается в 10. Эту десятку суммируют с цифрой уменьшаемого данного разряда и после этого производят вычитание. Далее при вычитании следующего разряда обязательно учитывают, что уменьшаемое стало на 1 меньше.

Произведение натуральных чисел

Произведение (или умножение) натуральных чисел – это арифметическое действие, представляющее собой нахождение суммы произвольного количества одинаковых слагаемых. Для записи действия умножения используют знак «·» (иногда «×» или «*»). Например: 3·5=15.

Действие умножение незаменимо при необходимости складывать большое количество слагаемых. Например, если нужно число 4 прибавить 7 раз, то перемножить 4 на 7 проще, нежели выполнять такое сложение: 4+4+4+4+4+4+4.

Числа, которые перемножают, называются множителями, результат умножения – произведением. Соответственно, термин «произведение» может в зависимости от контекста выражать собой как процесс умножения, так и его результат.

Многозначные числа перемножают в столбик. Для этого числа записывают так же, как и для сложения и вычитания. Рекомендуется первым (выше) записывать то из 2-х чисел, которое длиннее. В этом случае процесс умножения будет более простым, а следовательно, более рациональным.

При умножении в столбик выполняют последовательное умножение цифры каждого из разрядов второго числа на цифры 1-го числа, начиная с его конца. Найдя первое такое произведение, записывают цифру единиц, а цифру десятков держат в уме. При умножения цифры 2-го числа на следующую цифру 1-го числа к произведению прибавляют ту цифру, которую держат в уме. И снова записывают цифру единиц полученного результата, а цифру десятков запоминают. При умножении на последнюю цифру 1-го числа полученное таким способом число записывают полностью.

Результаты умножения цифры 2-го разряда второго числа записывают вторым рядом, сместив его на 1 клетку вправо. И так далее. В итоге будет получена «лесенка». Все получившиеся ряды цифр следует сложить (по правилу сложения в столбик). Пустые клетки при этом нужно считать заполненными нулями. Полученная сумма и есть конечное произведение.

Примечание
  1. Произведение любого натур.числа на 1 (или 1 на число) равно самому числу. Например: 376·1=376; 1·86=86.
  2. Когда один из множителей либо оба множителя равны 0, то и произведение равно 0. Например: 32·0=0; 0·845=845; 0·0=0.

Деление натуральных чисел

Делением называют арифметическое действие, с помощью которого по известному произведению и одному из множителей может быть найдет другой – неизвестный – множитель. Деление является действием, обратным умножению, и используется для проверки правильности выполненного умножения (и наоборот).

Читать еще:  Приснился корабль. Сонник - корабль

Число, которое делят, называют делимым; число, на которое делят, – делителем; результат деления называется частным. Знаком деления является «:» (иногда, реже – «÷»).

Здесь 48 – делимое, 6 – делитель, 8 – частное.

Не все натуральные числа можно поделить между собой. В этом случае выполняют деление с остатком. Заключается оно в том, что для делителя подбирается такой множитель, чтобы его произведение на делитель было бы числом, максимально близким по значению к делимому, но меньшим него. Делитель умножают на этот множитель и вычитают его из делимого. Разность и будет остатком от деления. Произведение делителя на множитель называют неполным частным. Внимание: остаток обязательно должен быть меньше подобранного множителя! Если остаток больше, то это означает, что множитель подобран неверно, и его следует увеличить.

Подбираем множитель для 7. В данном случае это число 5. Находим неполное частное: 7·5=35. Вычисляем остаток: 38-35=3. Поскольку 3

Тайна влияния чисел на людей. Изучение точного предмета: натуральные числа — это какие числа, примеры и свойства

Тайна влияния чисел на людей

Если предложить кому-то назвать любое число в диапазоне от 1 до 10, то в большинстве случаев собеседник назовет цифру семь. Недавно математик Алекс Беллос попытался проверить этот факт, собрав данные статистики, а заодно разобраться, почему люди чаще всего выбирают определенные числа и почему на разные цифры разные люди реагируют по-разному.

В онлайн-опросе, который провел ученый, приняли участие более 44 000 человек. Беллос задал им вопрос, какое число является для них любимым. Почти 10 процентов назвали таковым семерку. 7,5 процента — тройку. 60 процентов предпочли нечетные числа. Самым «нелюбимым» оказалось число 110: его не назвал никто.

Проще всего, по мнению Беллоса, объяснить популярность семерки. Исследователь считает, что это самое «обособленное» однозначное число. «Из первых десяти целых чисел семерку можно назвать самой «простой», — говорит он. — Ее нельзя удвоить, оставаясь в пределах первой десятки, или разделить на два или на три».

Также Беллос выяснил, что на выбор чисел влияют эмоциональные ассоциации. Так, число один респонденты характеризовали как «независимое, сильное и отважное». Двойку назвали «осторожной, мудрой, нежной и приятной». Тройку — «роскошной и много о себе возомнившей». А четверку — числом «спокойным и проказливым».

Кроме того, «в человеческой культуре принято связывать с числами некие мистические свойства», — добавляет автор исследования. Так, люди чаще выбирают нечетные числа, поскольку четные ассоциируются у них со смертью — ведь нечетное количество цветов, к примеру, кладут на могилу, «намекая», что дни усопшего сочтены…

Лишь некоторые приверженцы оккультизма любят числа 6, 66 или 666, ведь это «числа Сатаны». Даже несуеверный человек вряд ли выберет такое число по доброй воле… Числа 13 опасаются очень и очень многие. Если вы предложите выбирать между 12 и 13 или 13 и 14, то, скорее всего, человек выберет 12 или 14, несмотря на непопулярность четных чисел…

Что же касается любимого многими числа 3, в религии и эзотерике оно символизирует Триединство, или Троицу, символ объединения физического и духовного начал. Существует множество поговорок, связанных с «тройкой». Например: «Бог Троицу любит», «Обещанного три года ждут».

Семь — число мудрости, символ семи стихий. Использовалось во многих магических и эзотерических традициях. Так, в Древней Греции его называли «числом Аполлона», красивейшего из олимпийских богов. Оно символизировало собой совершенство. В то же время древние греки верили, что река Стикс 7 раз обтекает ад, кстати, у Вергилия делившийся на 7 областей — «семь кругов ада».

Согласно исламу, лишь на седьмом небе душа способна испытать высшее блаженство. А христиане переняли от буддистов обычай дарить семь слоников на счастье.

Семерка употребляется во множестве пословиц и поговорок: «Семи пядей во лбу», «Семь раз отмерь, один раз отрежь», «Семь бед — один ответ», «У семи нянек дитя без глазу» и др.

Любимые числа чаще бывают однозначными или двухзначными. Реже — трехзначными и более… Нередко выбор любимого числа обусловлен какими-то событиями в жизни человека. Скажем, он родился 9-го числа, и потому его любимое число — 9. Или 17-го числа в его жизни произошло какое-то радостное событие, и его любимым числом становится 17…

Бывают и «роковые» числа, которых человек боится, потому что они приносят ему несчастья. Так, в роду русских князей Юсуповых боялись числа 26. Дело в том, что Юсуповы происходили из рода хана Ногайской Орды Юсуф-Мурзы. Желая замириться с Москвой, он послал своих сыновей ко двору русского царя Ивана Грозного.

Когда до Орды дошла весть о переходе сыновей Юсуфа из магометанства в православие (сам хан Юсуф-Мурза к тому времени был вероломно заколот родным братом), одна из ногайских колдуний наложили на них проклятие. Согласно ему, в каждом поколении рода «отступников» Юсуповых до двадцати шести лет доживать будет только один из детей, и так продолжится, пока их род не будет полностью уничтожен…

Проклятие сбылось. Сколько бы детей ни рождали женщины в роду Юсуповых, лишь один из них доживал до двадцати шести лет… Кстати, количество букв в имени, отчестве и фамилии последнего в роду князя, жившего в эпоху царской России — Феликса Юсупова — тоже составляло 26. Он стал одним из убийц знаменитого Григория Распутина. После революции Юсуповы были вынуждены отправиться в эмиграцию и жили в довольно стесненных обстоятельствах. Их род пришел в упадок… Трудно сказать, сыграло ли здесь роль «роковое» число…

Читать еще:  Кто подходит ольге. Имя ольга

Изучение точного предмета: натуральные числа — это какие числа, примеры и свойства

В математике существует несколько различных множеств чисел: действительные, комплексные, целые, рациональные, иррациональные, дробные… В нашей повседневной жизни мы чаще всего используем натуральные числа, так как мы сталкиваемся с ними при счете и при поиске, обозначении количества предметов.

Какие числа называются натуральными

Из десяти цифр можно записать абсолютно любую существующую сумму классов и разрядов. Натуральными значениями считаются те, которые используются:

  • При счете каких-либо предметов (первый, второй, третий, … пятый, … десятый).
  • При обозначении количества предметов (один, два, три…)

N значения всегда целые и положительные. Наибольшего N не существует, так как множество целых значений не ограничено.

Абсолютно любое число может быть разложено и представлено в виде разрядных слагаемых, например: 8.346.809=8 миллионов+346 тысяч+809 единиц.

Множество N

Множество N находится в множестве действительных, целых и положительных. На схеме множеств они бы находились друг в друге, так как множество натуральных является их частью.

Множество натуральных чисел обозначается буквой N. Это множество имеет начало, но не имеет конца.

Еще существует расширенное множество N, где включается нуль.

Наименьшее натуральное число

В большинстве математических школ наименьшим значением N считается единица, так как отсутствие предметов считается пустотой.

Но в иностранных математических школах, например во французской, нуль считается натуральным. Наличие в ряде нуля облегчает доказательство некоторых теорем.

Ряд значений N, включающий в себя нуль, называется расширенным и обозначается символом N0 (нулевой индекс).

Ряд натуральных чисел

N ряд – это последовательность всех N совокупностей цифр. Эта последовательность не имеет конца.

Особенность натурального ряда заключается в том, что последующее число будет отличаться на единицу от предыдущего, то есть возрастать. Но значения не могут быть отрицательными.

  • Единицы (1, 2, 3),
  • Десятки (10, 20, 30),
  • Сотни (100, 200, 300),
  • Тысячи (1000, 2000, 3000),
  • Десятки тысяч (30.000),
  • Сотни тысяч (800.000),
  • Миллионы (4000000) и т.д.

Все N

Все N находятся во множестве действительных, целых, неотрицательных значений. Они являются их составной частью.

Эти значения уходят в бесконечность, они могут принадлежать классам миллионов, миллиардов, квинтиллионов и т.д.

Например:

  • Пять яблок, три котенка,
  • Десять рублей, тридцать карандашей,
  • Сто килограммов, триста книг,
  • Миллион звезд, три миллиона человек и т.д.

Последовательность в N

В разных математических школах можно встретить два интервала, которым принадлежит последовательность N:

от нуля до плюс бесконечности, включая концы, и от единицы до плюс бесконечности, включая концы, то есть все положительные целые ответы.

N совокупности цифр могут быть как четными, так и не четными. Рассмотрим понятие нечетности.

Нечетные (любые нечетные оканчиваются на цифры 1, 3, 5, 7, 9.) при делении на два имеют остаток. Например, 7_2=3,5, 11_2=5,5, 23_2=11,5.

Что значит четные N

Любые четные суммы классов оканчиваются на цифры: 0, 2, 4, 6, 8. При делении четных N на 2, остатка не будет, то есть в результате получается целый ответ. Например, 50_2=25, 100_2=50, 3456_2=1728.

Свойства N

Как и все другие множества, N обладают своими собственными, особыми свойствами. Рассмотрим свойства N ряда (не расширенного).

  • Значение, которое является самым маленьким и которое не следует ни за каким другим – это единица.
  • N представляют собой последовательность, то есть одно натуральное значение следует за другим (кроме единицы – оно первое).
  • Когда мы производим вычислительные операции над N суммами разрядов и классов (складываем, умножаем), то в ответе всегда получается натуральное значение.
  • При вычислениях можно использовать перестановку и сочетание.
  • Каждое последующее значение не может быть меньше предыдущего. Также в N ряде будет действовать такой закон: если число А меньше В, то в числовом ряде всегда найдется С, для которого справедливо равенство: А+С=В.
  • Если взять два натуральных выражения, например А и В, то для них будет справедливо одно из выражений: А=В, А больше В, А меньше В.
  • Если А меньше В, а В меньше С, то отсюда следует, что А меньше С.
  • Если А меньше В, то следует, что: если прибавить к ним одно и то же выражение (С), то А+С меньше В+С. Также справедливо, что если эти значения умножить на С, то АС меньше АВ.
  • Если В больше А, но меньше С, то справедливо: В-А меньше С-А.

Как называются компоненты умножения

Во многих простых и даже сложных задачах нахождение ответа зависит от умения школьников умножать.

Для того, чтобы быстро и правильно умножать и уметь решать обратные задачи, необходимо знать компоненты умножения.

15.10=150. В данном выражении 15 и 10 являются множителями, а 150 – произведением.

Умножение обладает свойствами, которые необходимы при решении задач, уравнений и неравенств:

  • От перестановки множителей конечное произведение не изменится.
  • Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель (справедливо для всех множителей).

Например: 15.Х=150. Разделим произведение на известный множитель. 150_15=10. Сделаем проверку. 15.10=150. По такому принципу решаются даже сложные линейные уравнения (если упростить их).

Что такое натуральные числа в математике?

Разряды и классы натуральных чисел

Вывод

Подведем итоги. N используются при счете или обозначении количества предметов. Ряд натуральных совокупностей цифр бесконечен, но он включает в себя только целые и положительные суммы разрядов и классов. Умножение тоже необходимо для того, чтобы считать предметы, а также для решения задач, уравнений и различных неравенств.

Это интересно! Легкие правила округления чисел после запятой

Источники:

http://stroypay.ru/raspberry/naturalnye-chisla—osnovy-izuchenie-tochnogo-predmeta-naturalnye-chisla.html
http://paranormal-news.ru/news/tajna_vlijanija_chisel_na_ljudej/2014-04-27-8933
http://uchim.guru/matematika/naturalnye-chisla-eto-kakie-chisla-primery.html

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector