Список натуральных чисел. Обозначение натуральных чисел — Гипермаркет знаний

Обозначение натуральных чисел

Содержание

Натуральные числа

Натуральные числа – это те числа, которые применяются для подсчета различных предметов или для того, чтобы указать порядковый номер какого-либо предмета среди себе подобных или однородных.

Записывать натуральные числа можно с помощью первых десяти цифр:

Для записи простых натуральных чисел принято использовать позиционную десятичную систему исчисления, где значение любой цифры определяют ее местом в записи.

Натуральные числа – это простейшие числа, часто используемые нами в повседневной жизни. С помощью этих чисел мы ведем подсчеты, считаем предметы, определяем их количество, порядок и номер.

С натуральными числами мы начинаем знакомиться с самого раннего детства, поэтому они для каждого из нас являются привычными и естественными.

Общее представление о натуральных числах

Натуральные числа предназначены для несения информации о количестве предметов, их порядковом номере и множестве предметов.

Человек использует натуральные числа, так как они ему доступны как на уровне восприятия, так и на уровне воспроизведения. При озвучивании любого натурального числа, мы с вами легко его улавливаем на слух, а изобразив натуральное число – мы его видим.

Все натуральные числа располагаются в порядке возрастания и образуют числовой ряд, начинающийся с наименьшего натурального числа, которым является единица.

Если мы определились с наименьшим натуральным числом, то с наибольшим будет посложнее, так как такого числа не существует потому, что ряд натуральных чисел является бесконечным.

При прибавлении к натуральному числу единицы, в итоге мы получим число, которое идет за данным числом.

Такая цифра, как 0 не есть натуральным числом, а только служит для обозначения числа «ноль» и значит «ни одного». 0 означает отсутствие в десятичной записи чисел единиц данного ряда.

Все натуральные числа обозначаются заглавной латинской буквой N.

Историческая справка обозначения натуральных чисел

В древние времена человек еще не знал, что такое число и как можно посчитать количество предметов. Но уже тогда возникла необходимость в счете, и человек придумал, как можно сосчитать пойманную рыбу, собранные ягоды и т.д.

Немного позже, древний человек пришел к тому, что нужное ему количество проще записать. Для этих целей первобытные люди стали использовать камешки, а потом палочки, которые сбереглись в римских цифрах.

Следующим моментом развития системы исчисления стало использование в обозначениях некоторых чисел букв алфавита.

К первым системам исчисления относится десятичная индийская система и шестидесятеричная вавилонская.

Современная система исчисления, хоть и называется арабской, но, по сути, представляет один из вариантов индийской. Правда в ее системе исчисления отсутствует цифра ноль, но арабы ее добавили, и система приобрела нынешний вид.

Десятичная система исчисления

С натуральными числами мы уже познакомись и научились записывать их с помощью десяти цифр. Также вам уже известно, что запись чисел с использованием знаков, называется системой исчисления.

Значение цифры в записи числа зависит от ее позиции и называется позиционным. То есть, при методах записи натуральных чисел, мы используем позиционную систему исчисления.

Данная система основывается на разрядности и десятичности. В десятичной системе исчисления основой для ее построения будут цифры от 0 до 9.

Особое место в такой системе отводится числу 10, так как, в основном счет ведется десятками.

Таблица классов и разрядов:

Так, например, 10 единиц объединены в десятки, далее в сотни, тысячи и тому подобное. Поэтому число 10 является основанием системы исчисления и носит название десятичной системы исчисления.

Обозначение натуральных чисел — Гипермаркет знаний. Натуральные числа

Простейшее число — это натуральное число . Их используют в повседневной жизни для подсчета

предметов, т.е. для вычисления их количества и порядка.

Что такое натуральное число: натуральными числами называют числа, которые используются для

подсчета предметов либо для указывания порядкового номера любого предмета из всех однородных

Натуральные числа — это числа, начиная с единицы. Они образуются естественным образом при счёте.

Например, 1,2,3,4,5. – первые натуральные числа.

Наименьшее натуральное число — один. Наибольшего натурального числа не существует. При счёте число

ноль не используют, поэтому ноль натуральное число.

Натуральный ряд чисел — это последовательность всех натуральных чисел. Запись натуральных чисел:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 .

В натуральном ряду каждое число больше предыдущего на единицу.

Сколько чисел в натуральном ряду? Натуральный ряд бесконечен, самого большого натурального числа

Система счёта (счисления) , которую мы используем, называется десятичной позиционной .

Десятичной так как 10 единиц всякого разряда образуют 1 единицу старшего разряда. Позиционной так

как значение цифры зависит от её места в числе, т.е. от разряда, где она записана.

Для подсчета времени в градусной мере углов существует шестидесятеричная система счисления (основа

число 60). В 1 часе — 60 минут, в 1 минуте — 60 секунд; в 1 угловом градусе — 60 минут, в 1 угловой

минуте — 60 секунд.

Всякое натуральное число легко записать в виде разрядных слагаемых.

Числа 1, 10, 100, 1000. – это разрядные единицы . При их помощи натуральные числа записывают как

разрядные слагаемые. Таким образом, число 307 898 в виде разрядных слагаемых записывается так:

307 898 = 300 000 + 7 000 + 800 + 90 + 8

Самые употребляемые числа имеют не больше 12 разрядов. Числа, которые имеют больше 12 разрядов,

относятся к группе больших чисел .

Когда запись натурального числа состоит из одного знака — одной цифры, его называют однозначным

числа 1, 5, 8 — однозначные числа.

Если запись числа состоит из 2-х знаков — двух цифр, его называют двузначным числом .

числа 14, 33, 28, 95 — двузначные числа,

числа 386, 555, 951 — трехзначные числа,

числа 1346, 5787, 9999 — четырехзначные числа и т. д.

Читать еще:  Знаки зодиака и их камни таблица. Как определить и узнать свой талисман

Обозначение натуральных чисел:

Множество натуральных чисел обозначают символом N.

Таблица натуральных (простых) чисел до 10 000.

Классы натуральных чисел.

Всякое натуральное число возможно написать при помощи 10-ти арабских цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Для чтения натуральных чисел их разбивают, начиная справа, на группы по 3 цифры в каждой. 3 первые

цифры справа – это класс единиц, 3 следующие – это класс тысяч, далее классы миллионов, миллиардов и

Сравнение натуральных чисел.

Из 2-х натуральных чисел меньше то число, которое при счете называется ранее. Например , число 7

меньше 11 (записывают так: 7). Когда одно число больше второго, это записывают так: 386 99 .

Таблица разрядов и классов чисел.

Натуральные числа — одно из старейших математических понятий.

В далёком прошлом люди не знали чисел и, когда им требовалось пересчитать предметы (животных, рыбу и т.д.), они делали это не так, как мы сейчас.

Количество предметов сравнивали с частями тела, например, с пальцами на руке и говорили: «У меня столько же орехов, сколько пальцев на руке».

Со временем люди поняли, что пять орехов, пять коз и пять зайцев обладают общим свойством — их количество равно пяти.

Натуральные числа — это числа, начиная с 1 , получаемые при счете предметов.

Наименьшее натуральное число — 1 .

Наибольшего натурального числа не существует.

При счёте число ноль не используется. Поэтому ноль не считается натуральным числом.

Записывать числа люди научились гораздо позже, чем считать. Раньше всего они стали изображать единицу одной палочкой, потом двумя палочками — число 2 , тремя — число 3 .

Затем появились и особые знаки для обозначения чисел — предшественники современных цифр. Цифры, которыми мы пользуемся для записи чисел, родились в Индии примерно 1 500 лет назад. В Европу их привезли арабы, поэтому их называют арабскими цифрами .

Всего цифр десять: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 . С помощью этих цифр можно записать любое натуральное число.

Натуральный ряд — это последовательность всех натуральных чисел:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 …

В натуральном ряду каждое число больше предыдущего на 1 .

Натуральный ряд бесконечен, наибольшего натурального числа в нём не существует.

Систему счёта (счисления), который мы пользуемся, называют десятичной позиционной .

Десятичной потому, что 10 единиц каждого разряда образуют 1 единицу старшего разряда. Позиционной потому, что значение цифры зависит от её места в записи числа, то есть от разряда, в котором она записана.

Следующие за миллиардом классы названы в соответствии с латинскими наименованиями чисел. Каждая следующая единица содержит тысячу предыдущих.

  • 1 000 миллиардов = 1 000 000 000 000 = 1 триллион («три» — по латыни «три»)
  • 1 000 триллионов = 1 000 000 000 000 000 = 1 квадриллион («квадра» — по латыни «четыре»)
  • 1 000 квадриллионов = 1 000 000 000 000 000 000 = 1 квинтиллион («квинта» — по латыни «пять»)

Однако, физики нашли число, которое превосходит количество всех атомов (мельчайших частиц вещества) во всей Вселенной.

Это число получило специальное название — гугол . Гугол — число, у которого 100 нулей.

Определение

Натуральными числами называются числа, предназначенные для счета предметов. Для записи натуральных чисел используются 10 арабских цифр (0–9), положенных в основание общепринятой для математических расчетов десятичной системы счисления.

Последовательность натуральных чисел

Натуральные числа составляют ряд, начинающийся с 1 и охватывающий множество всех положительных целых чисел. Такая последовательность состоит из чисел 1,2,3, … . Это означает, что в натуральном ряду:

  1. Есть наименьшее число и нет наибольшего.
  2. Каждое следующее число больше предыдущего на 1 (исключение – сама единица).
  3. При стремлении к бесконечности числа растут неограниченно.

Иногда в ряд натуральных чисел вводят и 0. Это допустимо, и тогда говорят о расширенном натуральном ряде.

Классы натуральных чисел

Каждая цифра натурального числа выражает определенный разряд. Самая последняя – это всегда количество единиц в числе, предыдущая перед ней – количество десятков, третья от конца – количество сотен, четвертая – количество тысяч и так далее.

  • в числе 276: 2 сотни, 7 десятков, 6 единиц
  • в числе 1098: 1 тысяча, 9 десятков, 8 единиц; разряд сотен здесь отсутствует, поскольку выражен нулем.

Для больших и очень больших чисел можно увидеть устойчивую тенденцию (если исследовать число справа налево, то есть от последней цифры к первой):

  • три последних цифры в числе – это единицы, десятки и сотни;
  • три предыдущие – это единицы, десятки и сотни тысяч;
  • три стоящие перед ними (т.е.7-я, 8-я и 9-я цифры числа, считая от конца) – это единицы, десятки и сотни миллионов и т.д.

То есть всякий раз мы имеем дело с тремя цифрами, означающими единицы, десятки и сотни более крупного наименования. Такие группы формируют классы. И если с первыми тремя классами в повседневной жизни приходится иметь дело более или менее часто, то другие следует перечислить, потому что далеко не все помнят наизусть их названия.

  • 4-й класс, следующий за классом миллионов и представляющий собой числа из 10-12 цифр, называется миллиард (либо биллион);
  • 5-й класс – триллион;
  • 6-й класс – квадриллион;
  • 7-й класс – квинтиллион;
  • 8-й класс – секстиллион;
  • 9-й класс – септиллион.

Сложение натуральных чисел

Сложение натур.чисел представляет собой арифметическое действие, позволяющее получить число, в котором содержится столько же единиц, сколько имеется в складываемых числах вместе.

Знаком сложения является знак «+». Складываемые числа называются слагаемыми, получаемый результат – суммой.

Небольшие числа складывают (суммируют) устно, письменно такие действия записывают в строку.

Многозначные числа, которые прибавлять в уме затруднительно, принято складывать в столбик. Для этого числа записывают одно под другим, выравнивая по последней цифре, то есть пишут разряд единиц под разрядом единиц, разряд сотен под разрядом сотен и так далее. Далее нужно попарно сложить разряды. Если сложение разрядов происходит с переходом через десяток, то этот десяток фиксируется как единица над разрядом слева (то есть следующим за ним) и суммируется вместе с цифрами этого разряда.

Если в столбик складывается не 2, а больше чисел, то при суммировании цифр разряда избыточным может оказаться не 1 десяток, а несколько. В этом случае на следующий разряд переносится количество таких десятков.

Читать еще:  Литва православная. Православие в литве

Вычитание натуральных чисел

Вычитание – это арифметическое действие, обратное сложению, которое сводится к тому, что по имеющейся сумме и одному из слагаемых нужно найти другое – неизвестное слагаемое. Число, из которого вычитают, называется уменьшаемым; число, которое вычитают, – вычитаемым. Результат вычитания называют разностью. Знак, которым обозначают действие вычитания, является «–».

При переходе к сложению вычитаемое и разность превращаются в слагаемые, а уменьшаемое – в сумму. Сложением обычно проверяют правильность выполненного вычитания, и наоборот.

Здесь 74 – уменьшаемое, 18 – вычитаемое, 56 – разность.

Обязательным условием при вычитании натуральных чисел является следующее: уменьшаемое обязательно должно быть больше вычитаемого. Только в этом случае полученная разность тоже будет натуральным числом. Если действие вычитания осуществляется для расширенного натурального ряда, то допускается, чтобы уменьшаемое было равно вычитаемому. И результатом вычитания в этом случае будет 0.

Примечание: если нулю равно вычитаемое, то операция вычитания не изменяет величины уменьшаемого.

Вычитание многозначных чисел обычно производят в столбик. Записывают при этом числа так же, как и для сложения. Вычитание выполняется для соответствующих разрядов. Если же оказывается, что уменьшаемое меньше вычитаемого, то берут единицу из предыдущего (находящегося слева) разряда, которая после переноса, естественно, превращается в 10. Эту десятку суммируют с цифрой уменьшаемого данного разряда и после этого производят вычитание. Далее при вычитании следующего разряда обязательно учитывают, что уменьшаемое стало на 1 меньше.

Произведение натуральных чисел

Произведение (или умножение) натуральных чисел – это арифметическое действие, представляющее собой нахождение суммы произвольного количества одинаковых слагаемых. Для записи действия умножения используют знак «·» (иногда «×» или «*»). Например: 3·5=15.

Действие умножение незаменимо при необходимости складывать большое количество слагаемых. Например, если нужно число 4 прибавить 7 раз, то перемножить 4 на 7 проще, нежели выполнять такое сложение: 4+4+4+4+4+4+4.

Числа, которые перемножают, называются множителями, результат умножения – произведением. Соответственно, термин «произведение» может в зависимости от контекста выражать собой как процесс умножения, так и его результат.

Многозначные числа перемножают в столбик. Для этого числа записывают так же, как и для сложения и вычитания. Рекомендуется первым (выше) записывать то из 2-х чисел, которое длиннее. В этом случае процесс умножения будет более простым, а следовательно, более рациональным.

При умножении в столбик выполняют последовательное умножение цифры каждого из разрядов второго числа на цифры 1-го числа, начиная с его конца. Найдя первое такое произведение, записывают цифру единиц, а цифру десятков держат в уме. При умножения цифры 2-го числа на следующую цифру 1-го числа к произведению прибавляют ту цифру, которую держат в уме. И снова записывают цифру единиц полученного результата, а цифру десятков запоминают. При умножении на последнюю цифру 1-го числа полученное таким способом число записывают полностью.

Результаты умножения цифры 2-го разряда второго числа записывают вторым рядом, сместив его на 1 клетку вправо. И так далее. В итоге будет получена «лесенка». Все получившиеся ряды цифр следует сложить (по правилу сложения в столбик). Пустые клетки при этом нужно считать заполненными нулями. Полученная сумма и есть конечное произведение.

Примечание
  1. Произведение любого натур.числа на 1 (или 1 на число) равно самому числу. Например: 376·1=376; 1·86=86.
  2. Когда один из множителей либо оба множителя равны 0, то и произведение равно 0. Например: 32·0=0; 0·845=845; 0·0=0.

Деление натуральных чисел

Делением называют арифметическое действие, с помощью которого по известному произведению и одному из множителей может быть найдет другой – неизвестный – множитель. Деление является действием, обратным умножению, и используется для проверки правильности выполненного умножения (и наоборот).

Число, которое делят, называют делимым; число, на которое делят, – делителем; результат деления называется частным. Знаком деления является «:» (иногда, реже – «÷»).

Здесь 48 – делимое, 6 – делитель, 8 – частное.

Не все натуральные числа можно поделить между собой. В этом случае выполняют деление с остатком. Заключается оно в том, что для делителя подбирается такой множитель, чтобы его произведение на делитель было бы числом, максимально близким по значению к делимому, но меньшим него. Делитель умножают на этот множитель и вычитают его из делимого. Разность и будет остатком от деления. Произведение делителя на множитель называют неполным частным. Внимание: остаток обязательно должен быть меньше подобранного множителя! Если остаток больше, то это означает, что множитель подобран неверно, и его следует увеличить.

Подбираем множитель для 7. В данном случае это число 5. Находим неполное частное: 7·5=35. Вычисляем остаток: 38-35=3. Поскольку 3

11 натуральное число или нет. Обозначение натуральных чисел — Гипермаркет знаний

Определение

Натуральными числами называются числа, предназначенные для счета предметов. Для записи натуральных чисел используются 10 арабских цифр (0–9), положенных в основание общепринятой для математических расчетов десятичной системы счисления.

Последовательность натуральных чисел

Натуральные числа составляют ряд, начинающийся с 1 и охватывающий множество всех положительных целых чисел. Такая последовательность состоит из чисел 1,2,3, … . Это означает, что в натуральном ряду:

  1. Есть наименьшее число и нет наибольшего.
  2. Каждое следующее число больше предыдущего на 1 (исключение – сама единица).
  3. При стремлении к бесконечности числа растут неограниченно.

Иногда в ряд натуральных чисел вводят и 0. Это допустимо, и тогда говорят о расширенном натуральном ряде.

Классы натуральных чисел

Каждая цифра натурального числа выражает определенный разряд. Самая последняя – это всегда количество единиц в числе, предыдущая перед ней – количество десятков, третья от конца – количество сотен, четвертая – количество тысяч и так далее.

  • в числе 276: 2 сотни, 7 десятков, 6 единиц
  • в числе 1098: 1 тысяча, 9 десятков, 8 единиц; разряд сотен здесь отсутствует, поскольку выражен нулем.

Для больших и очень больших чисел можно увидеть устойчивую тенденцию (если исследовать число справа налево, то есть от последней цифры к первой):

  • три последних цифры в числе – это единицы, десятки и сотни;
  • три предыдущие – это единицы, десятки и сотни тысяч;
  • три стоящие перед ними (т.е.7-я, 8-я и 9-я цифры числа, считая от конца) – это единицы, десятки и сотни миллионов и т.д.
Читать еще:  Сонник волосы перекрасить. Перекрасить в рыжий цвет волосы

То есть всякий раз мы имеем дело с тремя цифрами, означающими единицы, десятки и сотни более крупного наименования. Такие группы формируют классы. И если с первыми тремя классами в повседневной жизни приходится иметь дело более или менее часто, то другие следует перечислить, потому что далеко не все помнят наизусть их названия.

  • 4-й класс, следующий за классом миллионов и представляющий собой числа из 10-12 цифр, называется миллиард (либо биллион);
  • 5-й класс – триллион;
  • 6-й класс – квадриллион;
  • 7-й класс – квинтиллион;
  • 8-й класс – секстиллион;
  • 9-й класс – септиллион.

Сложение натуральных чисел

Сложение натур.чисел представляет собой арифметическое действие, позволяющее получить число, в котором содержится столько же единиц, сколько имеется в складываемых числах вместе.

Знаком сложения является знак «+». Складываемые числа называются слагаемыми, получаемый результат – суммой.

Небольшие числа складывают (суммируют) устно, письменно такие действия записывают в строку.

Многозначные числа, которые прибавлять в уме затруднительно, принято складывать в столбик. Для этого числа записывают одно под другим, выравнивая по последней цифре, то есть пишут разряд единиц под разрядом единиц, разряд сотен под разрядом сотен и так далее. Далее нужно попарно сложить разряды. Если сложение разрядов происходит с переходом через десяток, то этот десяток фиксируется как единица над разрядом слева (то есть следующим за ним) и суммируется вместе с цифрами этого разряда.

Если в столбик складывается не 2, а больше чисел, то при суммировании цифр разряда избыточным может оказаться не 1 десяток, а несколько. В этом случае на следующий разряд переносится количество таких десятков.

Вычитание натуральных чисел

Вычитание – это арифметическое действие, обратное сложению, которое сводится к тому, что по имеющейся сумме и одному из слагаемых нужно найти другое – неизвестное слагаемое. Число, из которого вычитают, называется уменьшаемым; число, которое вычитают, – вычитаемым. Результат вычитания называют разностью. Знак, которым обозначают действие вычитания, является «–».

При переходе к сложению вычитаемое и разность превращаются в слагаемые, а уменьшаемое – в сумму. Сложением обычно проверяют правильность выполненного вычитания, и наоборот.

Здесь 74 – уменьшаемое, 18 – вычитаемое, 56 – разность.

Обязательным условием при вычитании натуральных чисел является следующее: уменьшаемое обязательно должно быть больше вычитаемого. Только в этом случае полученная разность тоже будет натуральным числом. Если действие вычитания осуществляется для расширенного натурального ряда, то допускается, чтобы уменьшаемое было равно вычитаемому. И результатом вычитания в этом случае будет 0.

Примечание: если нулю равно вычитаемое, то операция вычитания не изменяет величины уменьшаемого.

Вычитание многозначных чисел обычно производят в столбик. Записывают при этом числа так же, как и для сложения. Вычитание выполняется для соответствующих разрядов. Если же оказывается, что уменьшаемое меньше вычитаемого, то берут единицу из предыдущего (находящегося слева) разряда, которая после переноса, естественно, превращается в 10. Эту десятку суммируют с цифрой уменьшаемого данного разряда и после этого производят вычитание. Далее при вычитании следующего разряда обязательно учитывают, что уменьшаемое стало на 1 меньше.

Произведение натуральных чисел

Произведение (или умножение) натуральных чисел – это арифметическое действие, представляющее собой нахождение суммы произвольного количества одинаковых слагаемых. Для записи действия умножения используют знак «·» (иногда «×» или «*»). Например: 3·5=15.

Действие умножение незаменимо при необходимости складывать большое количество слагаемых. Например, если нужно число 4 прибавить 7 раз, то перемножить 4 на 7 проще, нежели выполнять такое сложение: 4+4+4+4+4+4+4.

Числа, которые перемножают, называются множителями, результат умножения – произведением. Соответственно, термин «произведение» может в зависимости от контекста выражать собой как процесс умножения, так и его результат.

Многозначные числа перемножают в столбик. Для этого числа записывают так же, как и для сложения и вычитания. Рекомендуется первым (выше) записывать то из 2-х чисел, которое длиннее. В этом случае процесс умножения будет более простым, а следовательно, более рациональным.

При умножении в столбик выполняют последовательное умножение цифры каждого из разрядов второго числа на цифры 1-го числа, начиная с его конца. Найдя первое такое произведение, записывают цифру единиц, а цифру десятков держат в уме. При умножения цифры 2-го числа на следующую цифру 1-го числа к произведению прибавляют ту цифру, которую держат в уме. И снова записывают цифру единиц полученного результата, а цифру десятков запоминают. При умножении на последнюю цифру 1-го числа полученное таким способом число записывают полностью.

Результаты умножения цифры 2-го разряда второго числа записывают вторым рядом, сместив его на 1 клетку вправо. И так далее. В итоге будет получена «лесенка». Все получившиеся ряды цифр следует сложить (по правилу сложения в столбик). Пустые клетки при этом нужно считать заполненными нулями. Полученная сумма и есть конечное произведение.

Примечание
  1. Произведение любого натур.числа на 1 (или 1 на число) равно самому числу. Например: 376·1=376; 1·86=86.
  2. Когда один из множителей либо оба множителя равны 0, то и произведение равно 0. Например: 32·0=0; 0·845=845; 0·0=0.

Деление натуральных чисел

Делением называют арифметическое действие, с помощью которого по известному произведению и одному из множителей может быть найдет другой – неизвестный – множитель. Деление является действием, обратным умножению, и используется для проверки правильности выполненного умножения (и наоборот).

Число, которое делят, называют делимым; число, на которое делят, – делителем; результат деления называется частным. Знаком деления является «:» (иногда, реже – «÷»).

Здесь 48 – делимое, 6 – делитель, 8 – частное.

Не все натуральные числа можно поделить между собой. В этом случае выполняют деление с остатком. Заключается оно в том, что для делителя подбирается такой множитель, чтобы его произведение на делитель было бы числом, максимально близким по значению к делимому, но меньшим него. Делитель умножают на этот множитель и вычитают его из делимого. Разность и будет остатком от деления. Произведение делителя на множитель называют неполным частным. Внимание: остаток обязательно должен быть меньше подобранного множителя! Если остаток больше, то это означает, что множитель подобран неверно, и его следует увеличить.

Подбираем множитель для 7. В данном случае это число 5. Находим неполное частное: 7·5=35. Вычисляем остаток: 38-35=3. Поскольку 3

Источники:

http://edufuture.biz/index.php?title=%D0%9E%D0%B1%D0%BE%D0%B7%D0%BD%D0%B0%D1%87%D0%B5%D0%BD%D0%B8%D0%B5_%D0%BD%D0%B0%D1%82%D1%83%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D1%85_%D1%87%D0%B8%D1%81%D0%B5%D0%BB
http://moesms.ru/oboznachenie-naturalnyh-chisel-gipermarket-znanii-naturalnye.html
http://pikapost.ru/vybor-imeni/11-naturalnoe-chislo-ili-net-oboznachenie-naturalnyh-chisel/

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector