Как решать примеры столбиком на вычитание. Как научить собаку команде «Сидеть»
Содержание
- 1 Как решать примеры столбиком на вычитание. Как научить собаку команде «Сидеть»
- 1.1 Удивительно легкий способ обучения ребенка устному счету
- 1.2 Как научить ребенка устному счету
- 1.3 Начальные уроки первого этапа. Обучение счету в пределах пяти
- 1.4 Урок № 1
- 1.5 Как решать примеры столбиком на вычитание. Вычитание
- 1.6 Что необходимо знать для вычитания столбиком?
- 1.7 Вычитание столбиком на примерах.
- 1.8 Решение примера в столбик на вычитание. Вычитание столбиком. Правила вычитания в столбик
- 1.9 Что необходимо знать для вычитания столбиком?
- 1.10 Вычитание столбиком на примерах.
Удивительно легкий способ обучения ребенка устному счету
Как научить ребенка устному счету
Почему я называю свой способ легким и даже удивительно легким? Да просто потому, что более простого и надежного способа обучения малышей счету я пока не встречал. Вы сами в этом скоро убедитесь, если воспользуетесь им для обучения своего ребенка. Для ребенка это будет просто игрой, а все, что потребуется от родителей — это уделять этой игре по несколько минут в день, и если будете придерживаться моих рекомендаций, то раньше или позже ваш ребенок обязательно начнет считать наперегонки с вами. Но возможно ли такое, если ребенку всего три или четыре года? Оказывается, вполне возможно. Во всяком случае, я успешно делаю это более десяти лет.
Весь процесс обучения я излагаю далее очень подробно, с детальным описанием каждой обучающей игры, для того чтобы его смогла повторить со своим ребенком любая мама. А, кроме того, в Интернете на моем сайте “Семь ступенек к книжке” я разместил видеозаписи фрагментов моих занятий с детьми, чтобы сделать эти уроки еще более доступными для воспроизведения.
Сначала несколько вступительных слов.
Первый вопрос, который возникает у некоторых родителей: а стоит ли начинать учить ребенка счету до школы?
Я считаю, что обучать ребенка нужно тогда, когда он проявляет интерес к предмету обучения, а не после того, как этот интерес у него угас. А интерес к счету и подсчитыванию проявляется у детей рано, его надо лишь слегка подпитывать и незаметно день ото дня усложнять игры. Если же ваш ребенок почему-то безразличен к пересчитыванию предметов, не говорите себе: “У него нет склонности к математике, я тоже в школе по математике отставала”. Постарайтесь пробудить в нем этот интерес. Просто включите в его развивающие игры то, что вы до сих пор упускали: пересчитывание игрушек, пуговичек на рубашке, ступенек при ходьбе и т.п.
Второй вопрос: каким способом лучше обучать ребенка?
Ответ на этот вопрос вы получите, прочитав здесь полное изложение моей методики обучения устному счету.
А пока хочу предостеречь вас от применения некоторых способов обучения, не приносящих ребенку пользу.
Не учите ребенка складывать и вычитать по единице:
“Чтобы к 2-м прибавить 3, нужно сначала к 2-м прибавить 1, получится 3, потом к 3-м прибавить еще 1, получится 4, и, наконец, к 4-м прибавить еще 1, в результате будет 5”; “- Чтобы от 5-ти отнять 3, нужно сначала отнять 1, останется 4, потом от 4-х отнять еще 1, останется 3, и, наконец, от 3-х отнять еще 1, в результате останется 2”.
Этот, к сожалению, распространенный способ вырабатывает и закрепляет привычку к медленному подсчитыванию и не стимулирует умственное развитие ребенка. Ведь считать — значит складывать и отнимать сразу целыми числовыми группами, а не добавлять и убавлять по единичке, да еще и с помощью пересчитывания пальчиков или палочек. Почему же этот не полезный для ребенка способ так распространен? Думаю, потому что так проще учителю. Надеюсь, что некоторые учителя, ознакомившись с моей методикой, откажутся от него.
Не начинайте учить ребенка считать с помощью палочек или пальцев и следите, чтобы он не начал пользоваться ими позже по совету старшей сестрички или братика. Научить считать на пальцах легко, а отучить трудно. Пока ребенок считает по пальцам, механизм памяти не задействован, в памяти не откладываются результаты сложения и вычитания целыми числовыми группами.
И, наконец, ни в коем случае не используйте появившийся в последние годы способ счета “по линеечке”:
“Чтобы к 2-м прибавить 3, нужно взять линеечку, найти на ней цифру 2, отсчитать от нее вправо 3 раза по сантиметру и прочитать на линеечке результат 5”;
“Чтобы от 5-ти отнять 3, нужно взять линеечку, найти на ней цифру 5, отсчитать от нее влево 3 раза по сантиметру и прочитать на линеечке результат 2”.
Этот способ счета с использованием такого примитивного “калькулятора”, как линеечка, как будто нарочно придуман для того, чтобы отучить ребенка думать и запоминать. Чем так учить считать, лучше вовсе не учить, а сразу показать, как пользоваться калькулятором. Ведь этот способ, точно так же, как и калькулятор, исключает тренировку памяти и тормозит умственное развитие малыша.
На первом этапе обучения устному счету необходимо научить ребенка считать в пределах десяти. Нужно помочь ему прочно запомнить результаты всех вариантов сложения и вычитания чисел в пределах десяти так, как помним их мы, взрослые.
На втором этапе обучения дошкольники осваивают основные методы сложения и вычитания в уме двузначных чисел. Главным теперь уже является не автоматическое извлечение из памяти готовых решений, а понимание и запоминание способов сложения и вычитания в последующих десятках.
Как на первом, так и на втором этапе обучение устному счету происходит с применением элементов игры и состязательности. С помощью обучающих игр, выстроенных в определенной последовательности, достигается не формальное заучивание, а осознанное запоминание с использованием зрительной и тактильной памяти ребенка с последующим закреплением в памяти каждого усвоенного шага.
Почему я учу именно устному счету? Потому что только устный счет развивает память, интеллект ребенка и то, что мы называем смекалкой. А именно это и потребуется ему в последующей взрослой жизни. А писание “примеров” с длительным обдумыванием и вычислением ответа на пальчиках дошкольнику ничего, кроме вреда, не приносит, т.к. отучает думать быстро. Примеры он будет решать позже, в школе, отрабатывая аккуратность оформления. А сообразительность необходимо развить в раннем возрасте, чему способствует именно устный счет.
Еще до того как начать обучение ребенка сложению и вычитанию, родители должны научить его пересчитывать предметы на картинках и в натуре, считать ступеньки на лестнице, шаги на прогулке. К началу обучения устному счету ребенок должен уметь сосчитать хотя бы пять игрушек, рыбок, птичек, или божьих коровок и при этом освоить понятия “больше” и “меньше”. Но все эти разнообразные предметы и существа не следует использовать в дальнейшем для обучения сложению и вычитанию. Обучение устному счету нужно начинать со сложения и вычитания одних и тех же однородных предметов, образующих определенную конфигурацию для каждого их числа. Это позволит задействовать зрительную и тактильную память ребенка при запоминании результатов сложения и вычитания целыми числовыми группами (см. видеофайл 056). В качестве пособия для обучения устному счету я применил набор небольших счетных кубиков в коробочке для счета (подробное описание — далее). А к рыбкам, птичкам, куклам, божьим коровкам и прочим предметам и существам дети вернутся позже, при решении арифметических задач. Но к этому времени сложение и вычитание любых чисел в уме уже не будет представлять для них сложности.
Для удобства изложения я разбил первый этап обучения (счет в пределах первого десятка) на 40 уроков, а второй этап обучения (счет в последующих десятках) еще на 10-15 уроков. Пусть вас не пугает большое количество уроков. Разбивка всего курса обучения на уроки приблизительна, с подготовленными детьми я прохожу иногда по 2-3 урока за одно занятие, и вполне возможно, что вашему малышу так много занятий не потребуется. Кроме того, уроками эти занятия можно назвать лишь условно, т.к. продолжительность каждого составляет лишь 10-20 минут. Их можно также совмещать с уроками чтения. Заниматься желательно два раза в неделю, а выполнению домашних заданий достаточно уделять по 5-7 минут в остальные дни. Самый первый урок нужен не каждому ребенку, он разработан лишь для детей, которые еще не знают цифры 1 и, глядя на два предмета, не могут сказать, сколько их, не подсчитав предварительно пальчиком. Их обучение необходимо начинать практически “с чистого листа”. Более подготовленные дети могут начинать сразу со второго, а некоторые — с третьего или четвертого урока.
Я провожу занятия одновременно с тремя детьми, не более, чтобы удерживать внимание каждого из них и не давать им скучать. Когда уровень подготовки детей несколько отличается, приходится заниматься с ними поочередно разными задачками, все время переключаясь с одного ребенка на другого. На начальных уроках присутствие родителей желательно для того, чтобы они поняли суть методики и правильно выполняли несложные и коротенькие ежедневные домашние задания со своими детьми. Но разместить родителей надо так, чтобы дети забыли об их присутствии. Родители не должны вмешиваться и одергивать своих детей, даже если те шалят или отвлекаются.
Занятия с детьми устным счетом в небольшой группе можно начинать, приблизительно, с трехлетнего возраста, если они уже умеют подсчитывать пальчиком предметы, хотя бы до пяти. А с собственным ребенком родители вполне могут заниматься начальными уроками по этой методике и с двух лет.
Начальные уроки первого этапа. Обучение счету в пределах пяти
Для проведения начальных уроков потребуются пять карточек с цифрами 1, 2, 3, 4, 5 и пять кубиков с размером ребра примерно 1,5-2 см, установленных в коробочке. В качестве кубиков я использую продающиеся в магазинах развивающих игр “кубики знаний”, или “learning bricks”, по 36 кубиков в коробке. На весь курс обучения вам потребуются три таких коробки, т.е. 108 кубиков. Для начальных уроков я беру пять кубиков, остальные понадобятся позже. Если вам не удастся подобрать готовые кубики, то их несложно будет изготовить самостоятельно. Для этого нужно лишь распечатать на плотной бумаге, 200-250 г/м2, рисунок, а затем вырезать из него заготовки кубиков, склеить их в соответствии с имеющимися указаниями, заполнить любым наполнителем, например, какой-нибудь крупой, и оклеить снаружи скотчем. Необходимо также изготовить коробочку для установки этих пяти кубиков в ряд. Склеить ее так же просто из распечатанного на плотной бумаге и вырезанного рисунка. На дне коробочки начерчены пять клеток по размеру кубиков, кубики должны помещаться в ней свободно.
Вы уже поняли, что обучение счету на начальном этапе будет производиться с помощью пяти кубиков и коробочки с пятью клетками для них. В связи с этим возникает вопрос: а чем же способ обучения с помощью пяти счетных кубиков и коробочки с пятью клетками лучше обучения при помощи пяти пальцев? Главным образом тем, что коробочку учитель время от времени может накрывать ладонью или убирать, благодаря чему расположенные в ней кубики и пустые клетки очень скоро запечатлеваются в памяти ребенка. А пальцы ребенка всегда остаются при нем, он может их увидеть или нащупать, и в запоминании просто не возникает необходимости, стимулирование механизма памяти не происходит.
Не следует также пытаться заменять коробочку с кубиками счетными палочками, другими предметами для счета или кубиками, не составленными в коробочке в ряд. В отличие от кубиков, выстроенных в ряд в коробочке, эти предметы располагаются беспорядочно, не образуют постоянной конфигурации и потому не откладываются в памяти в виде запомнившейся картинки.
Урок № 1
До начала урока выясните, какое количество кубиков ребенок способен определять одновременно, не пересчитывая их по штучке пальчиком. Обычно к трем годам дети могут сказать сразу, не подсчитывая, сколько в коробке кубиков, если их количество не превышает двух или трех, и лишь некоторые из них видят сразу четыре. Но есть дети, которые пока могут назвать лишь один предмет. Для того чтобы сказать, что видят два предмета, они должны посчитать их, показывая пальчиком. Для таких детей и предназначен первый урок. Остальные присоединятся к ним позже. Чтобы определить, какое количество кубиков ребенок видит сразу, ставьте попеременно в коробочку разное количество кубиков и спрашивайте: “Сколько кубиков в коробочке? Не считай, скажи сразу. Молодец! А сейчас? А сейчас? Правильно, молодец!” Дети могут сидеть или стоять у стола. Коробочку с кубиками ставьте на стол рядом с ребенком параллельно кромке стола.
Для выполнения заданий первого урока оставьте детей, которые пока могут определить только один кубик. Играйте с ними поочередно.
- Игра “Приставляем цифры к кубикам” с двумя кубиками.
Положите на стол карточку с цифрой 1 и карточку с цифрой 2. Поставьте на стол коробочку и вложите в нее один кубик. Спросите ребенка, сколько кубиков в коробочке. После того как он ответит “один”, покажите ему и назовите цифру 1 и попросите положить ее рядом с коробочкой. Добавьте в коробочку второй кубик и попросите посчитать, сколько теперь в коробочке кубиков. Пусть, если хочет, посчитает кубики пальчиком. После того как ребенок скажет, что в коробочке уже два кубика, покажите ему и назовите цифру 2 и попросите убрать от коробочки цифру 1, а на ее место положить цифру 2. Повторите эту игру несколько раз. Очень скоро ребенок запомнит, как выглядят два кубика, и начнет называть это количество сразу, не подсчитывая. Одновременно он запомнит цифры 1 и 2 и будет придвигать к коробочке цифру, соответствующую количеству кубиков в ней. - Игра “Гномики в домике” с двумя кубиками.
Скажите ребенку, что сейчас будете играть с ним в игру “Гномики в домике”. Коробочка — это понарошку домик, клеточки в ней — комнатки, а кубики — гномики, которые в них живут. Поставьте один кубик на первую клеточку слева от ребенка и скажите: “Один гномик пришел в домик”. Потом спросите: “А если к нему придет еще один, сколько гномиков будет в домике?” Если ребенок затрудняется ответить, поставьте второй кубик на стол рядом с домиком. После того как ребенок скажет, что теперь в домике будет два гномика, позвольте ему поставить второго гномика рядом с первым на вторую клеточку. Затем спросите: “А если теперь один гномик уйдет, сколько гномиков останется в домике?” На этот раз ваш вопрос не вызовет затруднения и ребенок ответит: “Один останется”.
Потом усложните игру. Скажите: “А теперь сделаем домику крышу”. Накройте коробочку ладонью и повторите игру. Каждый раз, когда ребенок скажет, сколько гномиков стало в домике, после того как один пришел, или сколько их в нем осталось, после того как один ушел, убирайте крышу-ладонь и позволяйте ребенку самому добавлять или убирать кубик и убеждаться в правильности своего ответа. Это способствует подключению не только зрительной, но и тактильной памяти ребенка. Убирать всегда нужно последний кубик, т.е. второй слева.
Играйте в игры 1 и 2 поочередно со всеми детьми в группе. Скажите родителям, присутствующим на уроке, что дома они должны играть со своими детьми в эти игры ежедневно один раз в день, если только дети сами не просят больше.
Как решать примеры столбиком на вычитание. Вычитание
Удобно проводить особым методом, который получил название вычитание столбиком или вычитание в столбик . Этот способ вычитания оправдывает свое название, так как уменьшаемое, вычитаемое и разность записываются в столбик. Промежуточные вычисления также проводятся в столбиках, соответствующих разрядам чисел.
Удобство вычитания натуральных чисел столбиком заключается в простоте вычислений. Вычисления сводятся к использованию таблицы сложения и применению свойств вычитания.
Давайте разберемся, как выполняется вычитание столбиком. Процесс вычитания будем рассматривать вместе с решением примеров. Так будет понятнее.
Навигация по странице.
Что необходимо знать для вычитания столбиком?
Для вычитания натуральных чисел столбиком необходимо знать, во-первых, как выполняется вычитание с помощью таблицы сложения .
Наконец, не помешает повторить определение разряда натуральных чисел .
Вычитание столбиком на примерах.
Начнем с записи. Сначала записывается уменьшаемое. Под уменьшаемым располагается вычитаемое. Причем делается это так, что цифры оказываются одна под другой, начиная справа. Слева от записанных чисел ставится знак минус, а внизу проводится горизонтальная линия, под которой будет записан результат после проведения необходимых действий.
Приведем несколько примеров правильных записей при вычитании столбиком. Запишем в столбик разность 56−9 , разность 3 004−1 670 , а так же 203 604 500−56 777 .
Итак, с записью разобрались.
Переходим к описанию процесса вычитания столбиком. Его суть заключается в последовательном вычитании значений соответствующих разрядов. Сначала вычитаются значения разряда единиц, далее – значения разряда десятков, далее – значения разряда сотен и т.д. Результаты записываются под горизонтальной линией на соответствующих местах. Число, которое образуется под линией после завершения процесса, является искомым результатом вычитания двух исходных натуральных чисел.
Представим схему, иллюстрирующую процесс вычитания столбиком натуральных чисел.
Приведенная схема дает общую картину вычитания натуральных чисел столбиком, однако она не отражает всех тонкостей. С этими тонкостями разберемся при решении примеров. Начнем с самых простых случаев, а дальше будем постепенно продвигаться к более сложным случаям, пока не разберемся со всеми нюансами, которые могут встретиться при вычитании столбиком.
Для начала вычтем столбиком из числа 74 805 число 24 003 .
Запишем эти числа так, как этого требует метод вычитания столбиком:
Начинаем с вычитания значений разрядов единиц, то есть, вычитаем из числа 5 число 3 . Из таблицы сложения имеем 5−3=2 . Записываем полученные результат под горизонтальную черту в этом же столбике, в котором находятся числа 5 и 3 :
Теперь вычитаем значения разряда десятков (в нашем примере они равны нулю). Имеем 0−0=0 (это свойство вычитания мы упоминали в предыдущем пункте). Записываем полученный нуль под линию в том же столбике:
Идем дальше. Вычитаем значения разряда сотен: 8−0=8 (по свойству вычитания, озвученному в предыдущем пункте). Теперь наша запись примет следующий вид:
Переходим к вычитанию значений разряда тысяч: 4−4=0 (это свойств вычитания равных натуральных чисел). Имеем:
Осталось вычесть значения разряда десятков тысяч: 7−2=5 . Записываем полученное число под черту на нужное место:
На этом вычитание столбиком завершено. Число 50 802 , которое получилось внизу, является результатом вычитания исходных натуральных чисел 74 805 и 24 003 .
Рассмотрим следующий пример.
Отнимем столбиком от числа 5 777 число 5 751 .
Делаем все так же, как в предыдущем примере – вычитаем значения соответствующих разрядов. После завершения всех шагов запись примет следующий вид:
Под чертой получили число, в записи которого слева находятся цифры . Если эти цифры отбросить, то получим результат вычитания исходных натуральных чисел. В нашем случае отбрасываем две цифры , получившиеся слева. Имеем: разность 5 777−5 751 равна 26 .
До этого момента мы вычитали натуральные числа, записи которых состоят из одинакового количества знаков. Сейчас на примере разберемся, как вычитаются столбиком натуральные числа, когда в записи уменьшаемого больше знаков, чем в записи вычитаемого.
Вычтем из числа 502 864 число 2 330 .
Записываем уменьшаемое и вычитаемое в столбик:
По очереди вычитаем значения разряда единиц: 4−0=4 ; далее – десятков: 6−3=3 ; далее – сотен: 8−3=5 ; далее – тысяч: 2−2=0 . Получаем:
Теперь, чтобы завершить вычитание столбиком, нам еще нужно вычесть значения разряда десятков тысяч, а дальше – значения разряда сотен тысяч. Но из значений этих разрядов (в нашем примере из чисел и 5 ) нам вычитать нечего (так как вычитаемое число 2 330 не имеет цифр в этих разрядах). Как же быть? Очень просто – значения этих разрядов просто переписываются под горизонтальную линию:
На этом вычитание столбиком натуральных чисел 502 864 и 2 330 завершено. Разность равна 500 534 .
Осталось рассмотреть случаи, когда на некотором шаге вычитания столбиком значение разряда уменьшаемого числа меньше, чем значение соответствующего разряда вычитаемого. В этих случаях приходится «занимать» из старших разрядов. Давайте разберемся с этим на примерах.
Вычтем столбиком из числа 534 число 71 .
На первом шаге вычитаем из 4 число 1 , получаем 3 . Имеем:
На следующем шаге нам нужно вычитать значения разряда десятков, то есть, из числа 3 нужно вычесть число 7 . Так как 3
Решение примера в столбик на вычитание. Вычитание столбиком. Правила вычитания в столбик
Удобно проводить особым методом, который получил название вычитание столбиком или вычитание в столбик . Этот способ вычитания оправдывает свое название, так как уменьшаемое, вычитаемое и разность записываются в столбик. Промежуточные вычисления также проводятся в столбиках, соответствующих разрядам чисел.
Удобство вычитания натуральных чисел столбиком заключается в простоте вычислений. Вычисления сводятся к использованию таблицы сложения и применению свойств вычитания.
Давайте разберемся, как выполняется вычитание столбиком. Процесс вычитания будем рассматривать вместе с решением примеров. Так будет понятнее.
Навигация по странице.
Что необходимо знать для вычитания столбиком?
Для вычитания натуральных чисел столбиком необходимо знать, во-первых, как выполняется вычитание с помощью таблицы сложения .
Наконец, не помешает повторить определение разряда натуральных чисел .
Вычитание столбиком на примерах.
Начнем с записи. Сначала записывается уменьшаемое. Под уменьшаемым располагается вычитаемое. Причем делается это так, что цифры оказываются одна под другой, начиная справа. Слева от записанных чисел ставится знак минус, а внизу проводится горизонтальная линия, под которой будет записан результат после проведения необходимых действий.
Приведем несколько примеров правильных записей при вычитании столбиком. Запишем в столбик разность 56−9 , разность 3 004−1 670 , а так же 203 604 500−56 777 .
Итак, с записью разобрались.
Переходим к описанию процесса вычитания столбиком. Его суть заключается в последовательном вычитании значений соответствующих разрядов. Сначала вычитаются значения разряда единиц, далее – значения разряда десятков, далее – значения разряда сотен и т.д. Результаты записываются под горизонтальной линией на соответствующих местах. Число, которое образуется под линией после завершения процесса, является искомым результатом вычитания двух исходных натуральных чисел.
Представим схему, иллюстрирующую процесс вычитания столбиком натуральных чисел.
Приведенная схема дает общую картину вычитания натуральных чисел столбиком, однако она не отражает всех тонкостей. С этими тонкостями разберемся при решении примеров. Начнем с самых простых случаев, а дальше будем постепенно продвигаться к более сложным случаям, пока не разберемся со всеми нюансами, которые могут встретиться при вычитании столбиком.
Для начала вычтем столбиком из числа 74 805 число 24 003 .
Запишем эти числа так, как этого требует метод вычитания столбиком:
Начинаем с вычитания значений разрядов единиц, то есть, вычитаем из числа 5 число 3 . Из таблицы сложения имеем 5−3=2 . Записываем полученные результат под горизонтальную черту в этом же столбике, в котором находятся числа 5 и 3 :
Теперь вычитаем значения разряда десятков (в нашем примере они равны нулю). Имеем 0−0=0 (это свойство вычитания мы упоминали в предыдущем пункте). Записываем полученный нуль под линию в том же столбике:
Идем дальше. Вычитаем значения разряда сотен: 8−0=8 (по свойству вычитания, озвученному в предыдущем пункте). Теперь наша запись примет следующий вид:
Переходим к вычитанию значений разряда тысяч: 4−4=0 (это свойств вычитания равных натуральных чисел). Имеем:
Осталось вычесть значения разряда десятков тысяч: 7−2=5 . Записываем полученное число под черту на нужное место:
На этом вычитание столбиком завершено. Число 50 802 , которое получилось внизу, является результатом вычитания исходных натуральных чисел 74 805 и 24 003 .
Рассмотрим следующий пример.
Отнимем столбиком от числа 5 777 число 5 751 .
Делаем все так же, как в предыдущем примере – вычитаем значения соответствующих разрядов. После завершения всех шагов запись примет следующий вид:
Под чертой получили число, в записи которого слева находятся цифры . Если эти цифры отбросить, то получим результат вычитания исходных натуральных чисел. В нашем случае отбрасываем две цифры , получившиеся слева. Имеем: разность 5 777−5 751 равна 26 .
До этого момента мы вычитали натуральные числа, записи которых состоят из одинакового количества знаков. Сейчас на примере разберемся, как вычитаются столбиком натуральные числа, когда в записи уменьшаемого больше знаков, чем в записи вычитаемого.
Вычтем из числа 502 864 число 2 330 .
Записываем уменьшаемое и вычитаемое в столбик:
По очереди вычитаем значения разряда единиц: 4−0=4 ; далее – десятков: 6−3=3 ; далее – сотен: 8−3=5 ; далее – тысяч: 2−2=0 . Получаем:
Теперь, чтобы завершить вычитание столбиком, нам еще нужно вычесть значения разряда десятков тысяч, а дальше – значения разряда сотен тысяч. Но из значений этих разрядов (в нашем примере из чисел и 5 ) нам вычитать нечего (так как вычитаемое число 2 330 не имеет цифр в этих разрядах). Как же быть? Очень просто – значения этих разрядов просто переписываются под горизонтальную линию:
На этом вычитание столбиком натуральных чисел 502 864 и 2 330 завершено. Разность равна 500 534 .
Осталось рассмотреть случаи, когда на некотором шаге вычитания столбиком значение разряда уменьшаемого числа меньше, чем значение соответствующего разряда вычитаемого. В этих случаях приходится «занимать» из старших разрядов. Давайте разберемся с этим на примерах.
Вычтем столбиком из числа 534 число 71 .
На первом шаге вычитаем из 4 число 1 , получаем 3 . Имеем:
На следующем шаге нам нужно вычитать значения разряда десятков, то есть, из числа 3 нужно вычесть число 7 . Так как 3
Источники:
http://www.7ya.ru/article/Udivitelno-legkij-sposob-obucheniya-rebenka-ustnomu-schetu/
http://samptrade.ru/buhgalterskoe-obsluzhivanie/kak-reshat-primery-stolbikom-na-vychitanie-vychitanie/
http://delfinariy-saratov.ru/zhivotnye/reshenie-primera-v-stolbik-na-vychitanie-vychitanie-stolbikom-pravila/