Что такое бесконечность? Актуальная и потенциальная бесконечность.

Бесконечность

Термин бесконечность может описывать несколько различных понятий, в зависимости от области применения, будь это математика, физика, философия, теология или повседневная жизнь.

Потенциальная и актуальная бесконечность

Когда говорят, что некоторая величина потенциально бесконечны, то подразумевается, что она может быть неограниченно увеличена. Альтернативой является понятие актуальной бесконечности, которая означает величину, которая не имеет конечной меры. Пример: второй постулат Евклида утверждает не бесконечность длины прямой линии, а всего лишь то, что «прямую можно непрерывно продолжать». Это потенциальная бесконечность. Если же рассмотреть всю бесконечную прямую, то она дает пример актуальной бесконечности.

Античные философы и математики признавали, как правило, только потенциальную бесконечность, решительно отвергая возможность оперировать с актуально бесконечными атрибутами. Согласно этой доктрине формулировались научные утверждения. Например, теорема о бесконечности множества простых чисел в античных математиков формулировалась так: «Каково бы ни было простое число P, существует простое число, большее, чем P ».

. Всегда можно придумать большее число, потому что количество частей, на которые можно разделить отрезок, не имеет границ. Поэтому бесконечность потенциальная, никогда не действительна; которое бы число делений ни задали, всегда потенциально можно поделить на большее число.

Именно Аристотель сделал большой вклад в осознание бесконечности, разделив ее на потенциальную и актуальную и вплотную подойдя с этой стороны к основам математического анализа, а также указав на пять источников учения о ней:

  • Время;
  • Разделение величин;
  • Неисчерпаемость творений природы;
  • Само понятие границы, выталкивает за ее пределы;
  • Мышления, которое является неудержимым.

Бесконечность в культуре и философии

Бесконечность в большинстве культур появилась как абстрактное количественное обозначение чего необозримо большого в применении к сущностям без пространственных или временных границ.

Математическом происхождению символа бесконечности предшествовал религиозный аспект.

Понятие бесконечности развивалось в философии и теологии наряду с точными науками и естествознанием. Например, в теологии бесконечность Бога не столько дает количественное определение, сколько означает неограниченность и непостижимость. В философии бесконечность долгое время рассматривалась как атрибут пространства и времени ; в наши дни это дискуссионный вопрос космологии. Например, древним символом бесконечности, что встречается в совершенно разных культурах, есть змей Уроборос, которого иногда изображают таким, что сворачивается в виде перевернутой восьмерки.

Бесконечность в естествознании

В философии интенсивно обсуждались два вопроса, связанные с бесконечностью: вопрос о конечности или бесконечности вселенной в пространстве и времени и вопрос о возможности бесконечного деления. Актуальность этих философских вопросов несколько уменьшилась со становлением современных естественнонаучных теорий: физической космологии и атомистики.

В современной физической космологии доминирует теория Большого взрыва, по которой Вселенная, в той форме, в которой мы можем его себе представить, зародился примерно 13,8 млрд лет назад. Вопрос о том, что предшествовало, и то вообще предшествовало, Большом взрыве, остается неразрешимым. Остается невыясненной судьба Вселенной в далеком будущем — ограничением здесь является недостаточность данных о его физических параметрах.

По современным уявленннямы естествознания о форме Вселенной он является замкнутым, т.е. имеет конечный объем, хотя и ограничен. Космологический параметр плотности, который определяет форму Вселенной несколько больше единицы. Пространственных границ Вселенной физическая космология не устанавливает, но одновременно существуют пределы удаленности небесных тел, которые человек может наблюдать, связанные с конечностью скорости света и возрастом Вселенной.

Вопрос о бесконечной делимости вещества решилось в пользу существования атомов — мельчайших ее частиц. Атомы имеют сложное строение, но на субатомном уровне речь уже не идет о той же вещество.

Физические теории оперируют с абстракциями, которые связаны с понятием бесконечности. Например, физики часто рассматривают бесконечное сплошную среду, в котором распространяются монохроматические плоские волны. Хотя экспериментальных возможностей воспроизвести такую среду и такую волну нет, эти абстракции оказались плодотворными в смысле физических процессов.

Бесконечность в математике

В математике не существует одного понятия бесконечности, она наделяется особыми свойствами в каждом разделе. Более того, эти различные «бесконечности» не являются взаимозаменяемыми. Например, теория множеств рассматривает различные бесконечности, причем одна может быть больше другого. Скажем, количество целых чисел бесконечно велика (она называется счисления ). Чтобы обобщить понятие количества элементов для бесконечных множеств, в математике вводится понятие мощности множества. При этом не существует одной «бесконечной» мощности. Например, мощность множества действительных чисел больше мощность множества целых чисел, так как между этими множествами можно построить взаимно-однозначное соответствие ( биекцию ), а целые числа включенных в действительные. Таким образом, в этом случае « число элементов » (мощность) одного множества более «бесконечное» «числа элементов» (мощности) другого. Основоположником этих понятий был немецкий математик Георг Кантор.

В математическом анализе множеству действительных чисел добавляются два несобственные числа, которые обозначаются символами и и применяются для определения предельных значений и сходимости. В данном случае речь о «воспринимаемая» бесконечность не идет, так как любое утверждение, содержащее этот символ, можно записать, используя только конечные числа и кванторы. Эти символы, как и многие другие, были введены для сокращения записи более длинных выражений.

Читать еще:  Куспид 10 дома в рыбах профессия. Десятый дом

Символ бесконечности

Джон Волис ввел символ бесконечности в научной литературе.

Точное происхождение символа бесконечности ? неизвестно.

Наиболее вероятное объяснение состоит в том, что символ бесконечности происходит от формы ленты Мебиуса. Опять же, можно представить бесконечное путешествие по ее поверхности.

Ввод символа бесконечности ? часто приписывают Джону Волису в 1655 в его сочинении De sectionibus conicis. Одно из мнений о том, почему он выбрал этот символ является то, что он происходит из римского записи числа 1000 происходивший от этрусского записи числа1000, который выглядел вроде этого CI0 и иногда использовался для обозначения понятия «много». Другим мнением является то, что он происходит от греческой буквы ? омега, последней буквы в греческом алфавите. Или еще, так как вся верстка проводилась вручную, ? легко верстались как 8 возвращена на 90°.

В кодировке Unicode бесконечность обозначена символом ? (U +221 E).

109.201.143.233 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Бесконечность

Бесконечность — концепция, используемая в математике, философии и естественных науках. Бесконечность какого-то понятия или атрибута некоторого объекта означает невозможность указать для него границы или количественную меру. Точное значение этого термина несколько различается в зависимости от области применения — математика, физика, философия, теология или повседневная жизнь.

Содержание

Потенциальная и актуальная бесконечность

Когда говорят, что некоторая величина потенциально бесконечна, то имеется в виду, что она может быть неограниченно увеличена. Альтернативой является понятие актуальной бесконечности, которая означает, что рассматривается (как реально существующая) величина, не имеющая конечной меры. Пример: второй постулат Евклида утверждает не бесконечность длины прямой линии, а всего лишь то, что «прямую можно непрерывно продолжать». Это потенциальная бесконечность. Если же рассмотреть всю бесконечную прямую, то она даёт пример актуальной бесконечности.

Античные философы и математики признавали, как правило, только потенциальную бесконечность, решительно отвергая возможность оперировать с актуально бесконечными атрибутами [1] . Соответственно этой доктрине формулировались научные утверждения. Например, теорема о бесконечности множества простых чисел у античных математиков формулировалась так: «Каково бы ни было простое число P, существует простое число, большее, чем P».

… Всегда возможно придумать большее число, потому что количество частей, на которые можно разделить отрезок, не имеет предела. Поэтому бесконечность потенциальна, никогда не действительна; какое бы число делений ни задали, всегда потенциально можно поделить на большее число [2] .

Именно Аристотель сделал большой вклад в осознание бесконечности, разделив её на потенциальную и актуальную и вплотную подойдя с этой стороны к основам математического анализа, а также указав на пять источников представления о ней:

  • время;
  • разделение величин;
  • неиссякаемость творящей природы;
  • само понятие границы, толкающее за её пределы;
  • мышление, которое неостановимо.

Бесконечность в культуре и философии

Бесконечность в большинстве культур появилась как абстрактное количественное обозначение чего-то непостижимо большого, в применении к сущностям без пространственных или временных границ.

Математическому происхождению символа бесконечности предшествовал [3] религиозный аспект. Подобные символы были найдены среди Тибетских наскальных гравюр; змея, кусающая свой хвост, или змея бесконечности, часто изображается в форме такого символа.

Понятие бесконечности получило развитие в философии и теологии наравне с точными науками. К примеру, в теологии бесконечность Бога не столько даёт количественное определение, сколько означает неограниченность и непостижимость. В философии бесконечность долгое время рассматривалась также как атрибут пространства и времени; в наши дни это дискуссионный вопрос космологии. Например, древнейшим, первым известным, встречающимся в совершенно различных культурах символом бесконечности является змей Уроборос, иногда разворачиваемый в виде перевёрнутой восьмёрки.

Бесконечность в математике

В математике не существует одного понятия бесконечности, она наделяется особыми свойствами в каждом разделе. Более того, эти различные «бесконечности» не взаимозаменяемы. [источник не указан 106 дней] К примеру, теория множеств подразумевает разные бесконечности, причём одна может быть больше другой. Скажем, количество целых чисел бесконечно большое (оно называется счётным). Чтобы обобщить понятие количества элементов для бесконечных множеств, в математике вводится понятие мощности множества. При этом не существует одной «бесконечной» мощности. Например, мощность множества действительных чисел больше мощности целых чисел, потому что между этими множествами нельзя построить взаимно-однозначное соответствие (биекцию), а целые числа включены в действительные. Таким образом, в этом случае «число элементов» (мощность) одного множества «бесконечней» «числа элементов» (мощности) другого. Основоположником этих понятий был немецкий математик Георг Кантор.

В математическом анализе ко множеству действительных чисел добавляются два символа и , применяющиеся для определения граничных значений и сходимости. Сто́ит отметить, что в этом случае речь об «осязаемой» бесконечности не идёт, так как любое утверждение, содержащее этот символ, можно записать, используя только конечные числа и кванторы. Эти символы, как и многие другие, были введены для сокращения записи более длинных выражений.

Символ

В 1655 году Джон Валлис издаёт большой трактат «О конических сечениях» (De sectionibus conicis), где на стр. 5 появляется придуманный им [4] [5] символ бесконечности: ∞. В Юникоде бесконечность обозначена символом ∞ (U+221E), он включён в типографскую раскладку Бирмана версии 2.0 ( AltGr + 8 ).

Читать еще:  К чему сниться спит человек. Спящий человек толкование сонника

Актуальная бесконечность

Актуальная бесконечность

Вот первый довод:

1. Актуальная бесконечность существовать не может.

2. Безначальный ряд временных событий представляет собой актуальную бесконечность.

3. Следовательно, безначальный ряд временных событий не может существовать.

Рассмотрим вначале первую посылку: Актуальная бесконечность не может существовать.

Что я имею в виду под актуальной бесконечностью? Множество объектов считается актуально бесконечным, если часть этого множества равна его целому. Так например, какой рад длиннее:

По общепринятым математическим представлениям, эти ряды эквивалентны, потому что они оба актуально бесконечны. Это кажется странным: ведь в правом ряду есть два числа, отсутствующие в левом. Но это лишь показывает, что в актуально бесконечном множестве часть (левый ряд) равна целому (правый ряд).

По той же причине математики утверждают, что ряд чётных чисел равен ряду натуральных чисел — несмотря на то, что ряд всех натуральных чисел содержит все чётные плюс бесконечное число нечётных чисел.

При этом не надо смешивать понятия актуальной бесконечности — и потенциальной бесконечности.[24]

По мнению великого немецкого математика Давида Гилберта, главное различие между актуальной и потенциальной бесконечностью заключается вот в чём. Потенциально бесконечное есть всегда нечто возрастающее и имеющее пределом бесконечность, тогда как актуальная бесконечность — это завершённое целое, в действительности содержащее бесконечное число предметов.[25]

Интересным примером этих двух типов бесконечности могут послужить два ряда событий: произошедших до и после какой-либо точки в прошлом.

Возьмём, например, момент в 1845 г., когда родился Георг Кантор, отец теории множеств.

В обоих случаях мы имеем в виду события, действительно случившиеся.

Точка, называемая «настоящее время», разумеется, не стоит на месте, а скользит вперёд. (По сути дела, это граница между событиями уже реализованными и ещё не реализованными.) Поэтому количество событий «после» (т. е. между 1845 г. и настоящим временем), хотя и в каждый конкретный момент конечное, постоянно возрастает. Оно никогда не реализовано до конца, и потому потенциально бесконечно.

Но ряд событий «до» полностью реализован, завершён и не возрастает. И если атеисты правы, и у Вселенной не было начала, то такой ряд бесконечен. Бесконечен актуально, реально.

В ходе наших рассуждений очень важно эти два понятия (актуальной и потенциальной бесконечности) не путать.

Второе пояснение касается слова «существовать». Когда я говорю, что актуальная бесконечность не может существовать, я имею в виду — существовать в реальном мире, или существовать не только в уме. Я вовсе не отрицаю законность использования понятия актуальной бесконечности в математике (оперирующей лишь мысленной реальностью). Я лишь утверждаю, что актуальная бесконечность не может существовать в физическом мире звёзд, планет, камней и людей.

Несколько примеров покажут абсурдность такого допущения.

Допустим, что существует библиотека, содержащая реально бесконечное число книг. Представим себе, что книги в ней только двух цветов, чёрного и красного, и что они стоят на полках, чередуясь: чёрная, красная, чёрная, красная, и т.д. Если кто-то скажет нам, что число чёрных книг равно числу красных, мы, вероятно, не удивимся. Но поверим ли мы, если нам скажут, что число чёрных книг равно числу чёрных и красных книг вместе? Ведь в таком собрании мы обнаружим все чёрные книги плюс бесконечное число красных книг!

Или же представим себе, что у нас есть книги трёх цветов, четырёх, пяти или даже ста. Поверим ли мы, что книг одного цвета столько же, сколько всего книг в библиотеке?

Или вообразите, что в библиотеке бесконечное число цветов книг. Можно предположить, что в бесконечно большой библиотеке будет приходиться по одной книге на каждый из бесконечного числа цветов. Но это не обязательно так. Как утверждают математики, если число книг действительно бесконечно, то на каждый из бесконечного числа цветов может прийтись и бесконечное количество книг. Таким образом мы получаем бесконечность бесконечностей! И тем не менее, если мы возьмём все книги всех цветов, их окажется не больше, чем книг только одного цвета.

Продолжим наши рассуждения. Предположим, что у каждой книги на корешке отпечатан номер. Поскольку библиотека реально бесконечна, каждое возможное число отпечатано на какой-либо из книг. Поэтому мы не можем добавить к библиотеке ещё одну книгу, ибо какой номер ей дать? Всё номера уже заняты. Таким образом, новой книге нельзя дать номера! Но это абсурд, так как в действительности предметы всегда можно нумеровать.

Если бы бесконечная библиотека существовала, то к ней невозможно было бы добавить ещё одну книгу. (Не потому ли, что она уже включала бы все существующие книги, и новую просто неоткуда было бы взять? Нет, ведь достаточно вырвать по листку из каждой книги первой сотни, склеить их вместе, поставить эту новую книгу на полку, и всё — библиотека пополнена!) Поэтому напрашивается единственно возможный вывод: библиотека, актуально бесконечная, — существовать не может.

Но предположим, что мы можем пополнить эту библиотеку, и я ставлю книгу на полку. По утверждению математиков, число книг в библиотеке осталось прежним. Как это может быть? Ведь мои опыт говорит: если я поставил книгу на полку, то там стало книгой больше, а если снял, то одной меньше.

Читать еще:  Что означает когда снится покойник. Сонник: к чему снится покойник живой

Мне легко вообразить себя, ставящего и снимающего эту книгу. Должен ли я впрямь всерьёз поверить, что когда я добавляю книги, их число не увеличивается, а когда убираю — не уменьшается? А если я добавлю к этой библиотеке бесконечное число или даже бесконечность бесконечностей книг? Неужели и теперь в библиотеке ни на одну книгу не больше, чем прежде? Мне в это трудно поверить. А вам?

А теперь давайте, наоборот, выдавать книги из библиотеки. Предположим, в понедельник мы выдали книгу номер восемь. Разве число книг не уменьшилось на одну?

Во вторник — выдадим все книги с нечётными номерами. Ушло бесконечное число книг, но математики скажут, что в библиотеке книг меньше не стало.

Допустим, что в среду мы выдали книги за номерами 4, 5, 6. и до бесконечности. Единым махом библиотека практически вся опустела, бесконечное число книг сведено к конечному: к трём. Но позвольте, ведь мы на этот раз выдали столько же книг, что и во вторник! Почему же такая разница? И кто поверит, что такая библиотека может на самом деле существовать?

Все эти примеры иллюстрируют тот факт, что актуальная бесконечность не может иметь места в физическом мире. Я вновь хочу подчеркнуть: это ничем не грозит теоретической системе, введённой в современную математику Г. Кантором. Больше того: даже такие энтузиасты математических теорий бесконечного, как Д. Гилберт, охотно соглашаются с тем, что понятие актуальной бесконечности — это только идея, не имеющая никакого отношения к реальному миру.[26] Поэтому — мы вправе заключить: актуальная бесконечность существовать не может.

Вторая посылка: Ряд событий во времени, не имеющий начала, представляет собой актуальную бесконечность.

Под «событием» я подразумеваю любую перемену, происходящую в физическом мире. То есть: если ряд прошлых событий (или перемен) всё время уходит в прошлое и никогда не имеет начала, то в этом случае, взятые все вместе, эти события составляют актуально бесконечное множество.

Допустим, мы спрашиваем, откуда появилась такая-то звезда. Нам отвечают, что она появилась в результате взрыва звезды, существовавшей до этого. Тогда мы спрашиваем, откуда появилась та звезда? Она тоже возникла из звезды, существовавшей до неё. А эта звезда откуда? Из другой, предыдущей звезды и так далее. Этот ряд звёзд будет примером безначального во времени ряда событий.

Тогда, если Вселенная существовала всегда, ряд всех событий прошлого в их совокупности составит актуальную бесконечность: потому что каждому событию в прошлом предшествовало другое событие. Таким образом, ряд прошлых событий будет бесконечным.

Но не будет ли он потенциально бесконечным? Нет, ибо мы видели, что прошлое завершено и актуально, — лишь будущее может быть охарактеризовано как потенциально бесконечное. Поэтому представляется очевидным, что безначальный ряд событий во времени является актуальной бесконечностью.

Это приводит нас к нужному заключению. безначальный ряд событий во времени существовать не может. (Мы установили ранее, что актуально бесконечное не может существовать в действительности. И если безначальный ряд временных событий есть актуальная бесконечность, то такой ряд не может существовать.)

Значит, ряд всех событий прошлого обязан иметь начало. Но ведь история Вселенной и есть ряд всех свершившихся событий! Поэтому у Вселенной должно быть начало.

Несколько примеров пояснят этот аргумент.

Мы знаем, что если бы актуальная бесконечность могла существовать в действительности, к ней невозможно было бы ничего прибавить. Но к ряду событий во времени происходят добавления каждый день — или, по крайней мере, нам так кажется. Если же этот ряд актуально бесконечен, то число событий, случившихся до настоящего момента, — не больше, чем, скажем, число событий до 1789 года или до любой другой точки в прошлом, сколь угодно далёкой.

Ещё пример. Вообразим, что вокруг Солнца уже целую вечность вращаются две планеты. Допустим, что одна проходит свою орбиту за три года, другая — за год. Таким образом, на каждый оборот одной приходятся три оборота другой. Вопрос: если они движутся вечно, которая из этих планет сделала больше орбитных оборотов? Ответ: обе сделали одинаковое число оборотов. Но это явный абсурд, ведь здравый смысл подсказывает: чем дольше они вращаются, тем сильнее увеличивается разрыв. Как же может число оборотов быть равным?

Или, наконец, допустим, что нам повстречался инопланетянин. Он утверждает, что целую вечность вёл счёт, и теперь кончает:…5, 4, 3, 2, 1, 0. Но мы можем спросить: почему он не кончил считать вчера? Или даже год назад? Неужели ему не хватило времени? Как же так? Ведь и до прошлого года прошло бесконечное число лет — значит, времени у него было достаточно. Что же получается? Как бы далеко в прошлое мы ни углубились, мы никогда не застигнем его за счетом. Следовательно, не может быть истинным утверждение, что он занят этим всю вечность.

Эти примеры подчёркивают абсурдность идеи безначального ряда событий во времени. Поскольку такой ряд является актуально бесконечным, а актуальная бесконечность существовать не может, то и этот ряд невозможен. Это значит, что Вселенная когда-то начала своё существование, что и требовалось доказать.

Источники:

http://studopedia.ru/view_filosofiya.php?id=84
http://dic.academic.ru/dic.nsf/ruwiki/12617
http://fil.wikireading.ru/78156

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector